Problem of the Week Problem C and Solution That's Odd

Problem

Did you know that the sum of the first n positive odd integers is n^{2} ? The sum of the first five positive odd integers would be 5^{2} or 25 . We can easily check to see that $1+3+5+7+9=25$. When adding the first a positive odd integers to the first b positive odd integers, the sum is 180. If p is the largest odd number in the first set of numbers and q is the largest odd number in the second set of numbers, then determine the sum $p+q$.

Solution

Since there are a positive odd integers and the largest is p, then $1+3+5+\cdots+p=a^{2}$. Since there are b positive odd integers and the largest is q, then $1+3+5+\cdots+q=b^{2}$.
We also know that when these two sets of odd numbers are added together, the sum is 180 so

$$
(1+3+5+\cdots+p)+(1+3+5+\cdots+q)=a^{2}+b^{2}=180
$$

One way to proceed is to pick values for a, determine a^{2} and then determine if the remaining number required to sum to 180 is a perfect square. The results are summarized in the table below.

a	a^{2}	$b^{2}=180-a^{2}$	$b(b>0)$	Solution?
1	1	$180-1=179$	13.4	no
2	4	$180-4=176$	13.3	no
3	9	$180-9=171$	13.1	no
4	16	$180-16=164$	12.8	no
5	25	$180-25=155$	12.4	no
6	36	$180-36=144$	12	yes
7	49	$180-49=131$	11.4	no
8	64	$180-64=116$	10.8	no
9	81	$180-81=99$	9.9	no
10	100	$180-100=80$	8.9	no
11	121	$180-121=59$	7.7	no
12	144	$180-144=36$	6	yes
13	169	$180-169=11$	3.3	no

If $a=14$, then $a^{2}=196$. This produces a value greater than 180 and cannot be a possible solution.

There appear to be two possible solutions. When $a=6$ and $b=12$, then $a^{2}+b^{2}=36+144=180$. This means that adding the first 6 odd positive integers to the first 12 odd positive integers results in a sum of 180 . So p is the sixth odd positive integer, namely 11 , and q is the twelfth odd positive integer, namely 23 . The sum, $p+q$, is $11+23$ or 34 . The second solution, $a=12$ and $b=6$, produces $p=23$ and $q=11$. The sum, $p+q$, is still 34 .

