Problem of the Week Problem C and Solutions

Circle-Go-Round

Problem

A circle with centre O is drawn around $\triangle OBD$ so that B and D lie on the circumference of the circle. BO is extended to A on the circle. Chord AC intersects OD and BD at F and E, respectively. If $\angle BAC = 19^{\circ}$ and $\angle OFA = 99^{\circ}$, determine the measure of $\angle BEC$. ($\angle BEC$ is marked x° on the diagram.)

Solution 1

In a triangle, the angles add to 180°. So in $\triangle OFA$,

$$\angle FOA = 180^{\circ} - 99^{\circ} - 19^{\circ} = 62^{\circ} = a.$$

BOA is a diameter and is therefore a straight line. Two angles on a straight line add to $180^\circ,$ so

$$\angle BOD = 180^{\circ} - a^{\circ} = 180^{\circ} - 62^{\circ} = 118^{\circ} = b.$$

O is the centre of the circle with *B* and *D* on the circumference. Therefore, *OD* and *OB* are radii of the circle and OD = OB. It follows that $\triangle ODB$ is isosceles and $\angle ODB = \angle OBD = c$.

Then in
$$\triangle ODB$$
,
 $c^{\circ} + c^{\circ} + b^{\circ} = 180^{\circ}$
 $2c + 118 = 180$
 $2c = 62$
 $c = 31$

Opposite angles are equal so it follows that $\angle CEB = \angle DEF = x^{\circ}$ and $\angle DFE = \angle AFO = 99^{\circ} = d$.

In $\triangle FED$,	$x^{\circ} + c^{\circ} + d^{\circ}$	=	180°
	x + 31 + 99	=	180
	x + 130	=	180
	x	=	50

 $\therefore \angle BEC = 50^{\circ}.$

Problem

A circle with centre O is drawn around $\triangle OBD$ so that B and D lie on the circumference of the circle. BO is extended to A on the circle. Chord AC intersects OD and BD at F and E, respectively. If $\angle BAC = 19^{\circ}$ and $\angle OFA = 99^{\circ}$, determine the measure of $\angle BEC$. ($\angle BEC$ is marked x° on the diagram.)

Solution 2

In a triangle, the angle formed at a vertex between the extension of a side and an adjacent side is called an exterior angle. In the following diagram, $\angle XZW$ is exterior to $\triangle XYZ$. The exterior angle theorem states: "the exterior angle of a triangle equals the sum of the two opposite interior angles." In the diagram, $r^{\circ} = p^{\circ} + q^{\circ}$. We will use this result and two of the pieces of information we found in Solution 1.

In a triangle, the angles add to 180°. So in $\triangle OFA$, $\angle FOA = 180^{\circ} - 99^{\circ} - 19^{\circ} = 62^{\circ} = a.$

O is the centre of the circle with B and D on the circumference. Therefore, OD and OB are radii of the circle and OD = OB. It follows that $\triangle ODB$ is isosceles and $\angle ODB = \angle OBD = c$.

 $\angle FOA$ is exterior to $\triangle ODB$.

$$\therefore \angle FOA = \angle ODB + \angle OBD$$
$$a^{\circ} = c^{\circ} + c^{\circ}$$
$$62 = 2c$$
$$31 = c$$

 $\angle CEB$ is exterior to $\triangle EBA$.

 $\therefore \angle CEB = \angle EAB + \angle EBA$ $x^{\circ} = 19^{\circ} + c^{\circ}$ x = 19 + 31x = 50

 $\therefore \angle BEC = 50^{\circ}.$

