Problem of the Week Problem C and Solution Slightly Irregular

Problem

In the following slightly irregular shape, $A B=50 \mathrm{~cm}, C D=15 \mathrm{~cm}, E F=30 \mathrm{~cm}$, the area of the shaded triangle, $\triangle D E F$, is $210 \mathrm{~cm}^{2}$; and the area of the entire figure, $A B C D E$, is $1000 \mathrm{~cm}^{2}$. Determine the length of $A E$.

Solution

The first task is to mark the given information on the diagram. This has been completed on the diagram to the right.

To find the area of a triangle, multiply the base length by the height and divide by 2 . In $\triangle D E F$, the base, $E F$, has length 30 cm . The height of $\triangle D E F$ is the perpendicular distance from $E F$ (extended) to vertex D, namely $G D$. The area is given. So

$$
\text { Area } \begin{aligned}
\triangle D E F & =\frac{30 \times G D}{2} \\
210 & =15 \times G D \\
14 & =G D
\end{aligned}
$$

We know that $E H=A B=50, G H=D C=15$, and
$E H=E F+F G+G H$. It follows that $50=30+F G+15$ and $F G=5 \mathrm{~cm}$.

Now we can relate the total area to the areas contained inside.

$$
\begin{aligned}
\text { Area } A B C D E & =\text { Area } A B H E+\text { Area } C D G H+\text { Area } \triangle D F G+\text { Area } \triangle D E F \\
1000 & =A B \times A E+D G \times D C+\frac{F G \times G D}{2}+210 \\
1000 & =50 \times A E+14 \times 15+\frac{5 \times 14}{2}+210 \\
1000 & =50 \times A E+210+35+210 \\
1000 & =50 \times A E+455 \\
1000-455 & =50 \times A E \\
545 & =50 \times A E \\
\frac{545}{50} & =A E
\end{aligned}
$$

$\therefore A E=10.9 \mathrm{~cm}$.

