Problem of the Week Problem C and Solution A Powerful Problem For The New Year

Problem

5^{3} is a power with base 5 and exponent 3.
5^{3} means $5 \times 5 \times 5$ and equals 125 when expressed as an integer.
When 5^{2013} is expressed as an integer, what are the last three digits?

Solution

Let's start by examining the last three digits of various powers of 5 .

$$
\begin{aligned}
& 5^{1}=005 \\
& 5^{2}=025 \\
& 5^{3}=125 \\
& 5^{4}=625 \\
& 5^{5}=3125 \\
& 5^{6}=15 \mathbf{6 2 5} \\
& 5^{7}=78125 \\
& 5^{8}=390625
\end{aligned}
$$

Notice that there is a pattern for the last three digits after the first two powers of 5 . For every odd integral exponent greater than 2 , the last three digits are " 125 ". For every even integral exponent greater than 2 , the last three digits are " 625 ". The pattern continues so 5^{9} will end " 125 " since the exponent 9 is odd and 5^{10} will end " 625 " since the exponent 10 is even. This is easily verified since $5^{9}=1953125$ and $5^{10}=9765625$.

For 5^{2013}, the exponent 2013 is greater than 2 and is an odd number.
\therefore the last three digits of 5^{2013} are 125 .

